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Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
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The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear
stretching process of passive vect@Py/s). In particular, we pay special attention to the difference of these
processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that
the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial
conditions with the same energy spectra. The above difference can be explained qualitatively by examining the
Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above differ-
ence, we examine the probability density functiéR®F9 of the stretching rates of the passive vectors in the
vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian
distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This
suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also
discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and
material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green
tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to
align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart
of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity
gradients and that of passive scalar gradients and a physical interpretation is given to it.
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. INTRODUCTION term w- S- w. To clarify the presence or absence of the Biot-
Savart constrainB=Y w], we compare the vorticity with
By extensive numerical and experimental investigationgpassive vectors and examine how the constraint makes the
performed in the past decades, it is understood at least qualrortex stretching term smaller tham S-w, wherew is an
tatively that there are coherent vortex structures in turbuarbitrary passive vector. It is clear that the direction of vor-
lence. In the case of homogeneous and isotropic turbulencetitity is important here and this point was highlighted math-
is well known that there are tubular vortex structures in theematically by showing that it can be used to monitor regu-
fully developed stagée.g., sed1]). larity of the Navier-Stokes equationfg] and of the Euler
The implications of the presence of the intense, localizedquationg 8] (see alsd9)).

vortex structures are multifold. First, they are believed to be Recently, we have performed an investigation to illustrate
responsible for transferring mass and heat in actual envirorhow the stretching effect of vorticity is made weaker by non-
ment. Second, because compactly supported vortices in tdinearity, that is, a kinematic constraint imposed by the Biot-
tally inviscid flows remain so all the time, localized vortices Savart law[10]. This was performed by comparing vortex
may be useful to some extent to economize the description aftretching with stretching of passive vectors in turbulence.
turbulence at high Reynolds numbd®. Third, and most The three-dimensional Navier-Stokes equations in vortic-
fundamental of all, their geometrical structure is believed toity form read
influence the net strength of nonlinearity. Such a structure is
closely connected with the weakening effects of the appar- Jw
ently quadratic nonlinear stretching, a phenomenon some- i T Veo=(a-V)u+ Vo, (1.1
times referred to adepletion of nonlinearityThis notion has
been used in a number of similar but different meanings.
Originally, it was introduced i3], where it was called “de- V-u=V.0=0, o=VXu, 1.2
pression of nonlinearity,” to mean that spatial averages of the
nonlinear terms such asx w calculated from turbulence are and the equations for the passive vectarare[11]
smaller than those obtained from a random velocity field,
which obeys a Gaussian distribution. The buildup of mo- IW
ments including odd-order ones was studied4n-6] nu- E+(U-V)W=(W~V)U+ vV2w, (1.3
merically and experimentally. Particularly the “nonlinarity
reduction” of the vortex stretching tensor, that is, the obser-
vation that|S- w| is smaller than the product of norms 8f V.-w=0. (1.4
and w, was studied in detail. It was also shown by a condi-
tional sampling method that such reduction is more signifi- The difference between them is that the stretching term of
cant in vorticity-dominated regions than in strain-dominatedeq. (1.1) is constrained by the Biot-Savart relationship
regions. In this paper, we also focus on the vortex stretchingvhereas that of Eq(1.3) is not. The Biot-Savart formula
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does a number of things; it makes the vortex stretching term TABLE I. Numerical parameters for type-I conditions.
nonlinear and conserve total energy. Thus, Bql) has as
inviscid invariants v 5x10°8 2.5x107°8 1.5x10°3 1.x10°3
dt 5%x10°3 5x10°3 2.X10°3 1.x10°3
f lulZdx, f U eodx, (1.5 N 128 128 256 256
while Eq. (1.3 has uniqueness argument for the solutions of Eiql). Concern-
ing Egs.(1.1) and(1.3), a question raised ifiL0] is how can
f u- wdx, f A-wdx, (1.6) their ;ut_)sequent time evolution differ, |f the initial conditions
are similar but not exactly the same in the sense that they

h —VxA Th . ‘ db . only share the Fourier spectrum of energy.
wherew=V X A. The comparison was periormed by Using  po the initial condition of type I, we compute using four
the norm of w with that of w on the basis of numerical different values of kinematic viscosity=5x10"3, 2.5

solutions of the Navier-Stokes equations. We note that this 1 5-3 1 541073 and 1x 10-3. The computations are per-
characterization concerns finité-e., longy time evolution. . ' }

The first objective of this paper is to study depletion of
nonlinearity in detail by studying the difference between so
lutions of Egs.(1.1) and (1.3). The second one is to study
infinitesimal-time evolution by examining the stretching

rates of both the fields, thereby making clear the distinctioquth N=128 are done in double precision arithmetic and

betwe_en f|n|te_- and |nf|n|te5|mal-t|me evolutions. . those with N=256 in single precision, because a large
This paper is organized as follows. In Sec. I, we describe

: : : . ~“amount of memory is required to solve them simultaneously.
detailed analyses of the long-time evolutions of the Nawer—We have checked that no essential differences in the time
Stokes flows. In Sec. Ill, we study infinitesimal-time evolu- evolution were found between computations in single and
ti_on by examining the stretching rates Of. vorticity .anq PaS-qouble precision folN=128 computations. We have also
o o Bovaset o e vatone o CHECKed Tl no ferences were found between compute

> e . ! N tions of Navier-Stokes flows in single and double precision
ducing a kind of alignment problem associated with theatN=256 resolution. The numerical parameters are summa-
Cauchy-Green tensor, we provide an alternative characteriz%-Zed in Table | The.ReynoIds numbers based on the Taylor
tion of depleted nonlinearity. Section V is devoted to Sum- - Croscale areR.A=45 8 673 86.3 and 101.3 &4 and

mary anc_i dlscus_5|on. I_n Appendix A, we address a S|m|IarRA:33_3, 45.7. 5.1, and 66.1 &t 6.
problem in two dimensions.

We show in Fig. 1a) time evolution of the energy dissi-

formed by a standard pseudospectral method with aliasing
errors removed by the 2/3 law. Thus, the maximum wave
‘number isN/3 for calculations with grid pointdN3. Time
marching is performed by the Runge-Kutta method. When
we solve Egs(1.1) and (1.3 simultaneously, computations

Il. FINITE-TIME EVOLUTION: VISCOUS PROBLEM 2

(@

We will treat two kinds of initial conditions. The first one,
employed in[10], has a compactly supported excitation in
the low wave number modes, whose spectrum of energy is
given by

Wo®

k? onlyfor k=1,2,3,

E(k)= 0 otherwise.

(2.2

The other one has also localized excitation in wave number
space but is not compactly supported,

(b) P

E(k)=c,k? exp(—k?), (2.2 1.5

wherec, is a constant such thdfew|?)/2=1. Hereafter, a
spatial average over the periodic bjgx27]° is denoted by
brackets throughout this paper.

We review the previous results and consider how they
change with increasing Reynolds number for the type-I con-
ditions. We also examine how the results change using a
wider class of initial conditions of the type II.

FIG. 1. Time evolution of(a) the energy dissipation rate(t)
and (b) a corresponding quantitgpy(t) for PVs. The values of
Clearly, if the initial conditionsw(x,0) andw(x,0) are  viscosity arev=5x10"2 (solid), 2.5x 10 2 (dashey] 1.5x10 3

exactly the same, then the solutions are the same by thghort-dashed and 1.0< 102 (dotted.

A. Higher Reynolds numbers
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10° : at timet=10 after the turbulence has fully developed. This
~ figure shows that at higher Reynolds number the shape of the
102} spectrum is compatible with a short Kolmogorov’s 5/3 range,
while it is hard to detect it clearly because of rather limited
2 4l resolution used here. In comparison, we show in Fip) 2
= corresponding spectrum for passive vector
10° 1
’ Ervki=5 2 [AKI~ (2.6)
10 k<|k|<k+1
At first glance this figure does not look very different from
10 the previous one. By examining them more carefully we find
that the amplitude is much larger than that of Fige)Zand a
power law range is less clearly seen here. Again, this stems
§> 10 from the lack of energy conservation in the stretching term in
S Eq. (1.3.
104} Next, we examine the time evolution of the statistical
properties on the alignment process of the vorticity and pas-
R sive vectors with the rate-of-strain tensor and compare them
107° . q .
) T 100 with the results of5,6].
k In Fig. 3 we show the probability density functions
FIG. 2. The energy specti@ E(k) and (b) Epy(k). The line (PDF9 _of the cosines of _the angle between the vorticity and
types are the same as in Fig. 1. each eigenvector d. As is well known, a strong preference
of the vorticity to align itself with the intermediate eigenvec-
pation rate tor is observed. It §hou|d be noted that this property is ob-
served before the time of maximum enstrophy3 and per-
e(t)=v{|w|?) (2.3  sists during the decaying process. In Fig. 4 we show the

corresponding PDFs of the angle between the passive vector
for the four different values of viscosity. Except for the caseand each eigenvect@®. Unlike Fig. 3 the property changes
of the largest value of viscosity, the peak value changes onlin time. In the early staget€2), passive vectors strongly
a little, that is, less than 25%, while the value of viscosity isalign themselves with the intermediate eigenvector, just like
changed by a factor of 2.5. The time of peak dissipation ratethe vorticity. However, after the time of maximum enstrophy
does not change significantly either. This does not imply, buthe preference to the intermediate strain is getting weaker
is consistent with a property of the energy dissipation ratevhile the preference to the most expanding strain stronger.
that behaves independent of the viscosity in the limit0. At t=10 the PDFs associated with the largest and the inter-

A corresponding spatial average for mediate strains almost collapse. As time goes on, the stretch-
ing effect is enhanced by redirecting the passive vector to the
epv(t)=v(|w|?), (2.4  most expanding strain eigenvector.

There are a number of investigations on the stretching of
is shown in Fig. 1b). In contrast to the energy dissipation material line elements, that is, passive vectsithout diffu-
rate, it is remarkable that this quantity keeps increasing at itsivity (see, e.g.[12].) It was reported if13] that they have
peak value as viscosity is decreased. It shows no trend & tendency to align themselves with the most expanding
tending to a limiting behavior as— 0. The difference in the strain eigenvectofsee[4,5,14 for relevant discussionsWe
limiting behavior between Eqg2.3 and (2.4) is the first note that an accurate estimate of material line stretching re-
evidence that the passive vectois more intensely stretched quires special care of numerical treatmfgtf]. We also note
than w. As mentioned above, the only difference betweenthat a comparison was made of active and passive vectors in
Egs.(1.1) and (1.3) is the presence of energy conservationa different formulation ir{ 16].
for the former. So, the above difference in behavior in the We consider the stretching rates of vorticityand that of
limit of small viscosity comes from the fact that EQ.3) is  passive vectoB, which are defined by
a well-defined physically meaningful quantity, whereas Eq.
(2.4) is not(see Table Il). This result strengthens the finding S
reported inf10] and can be interpreted to indicate that under a(x,t)= > (2.7
finite-time evolution, thew-S correlation is developed more | o]
strongly than thew-S correlation.

In Fig. 2(a) we show the energy spectrum and
1 ~ o w-S-w
El=5 > [k (2.5 BX,t) =———. 2.9
k<|kl<k+1 |W|2
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FIG. 3. The PDFs of the cosines that the anglenakes withe, (solid), e, (dasheg ande; (dotted, at timest=0, 2, 4, 6, 8, and 10.

Their PDFs are shown in Fig(& in a normalized form It is of interest to examine how regions with interjse]
as a=al{Jo[?) and B=p/(Jw?), together with and|w]| look like in physical space. We show in Figathe
that of the three eigenvalues of the rate-of-strainisosurface plots ofw|? and|w|? at timet=2, well before the
tensor Ni=N/\{Jw[?), X,=X\,/\(Jw[?), and X, enstrophy attains its maximum. Even in this early stage lots
=3/ \{[e[3). Not surprisingly, the PDF & is close to that of vorti_city t2ubes are already formed imw|. On the other .
of X,. It was unexpected, however, that the PDF3d6 also hand, m|\.N| ’ Ia)_/erhke struct_urgs are appare_ntly predomi-
fairly close to\,. In Fig. 5b) we show an enlarged plot of nant. In Fig. &b) is shown a S'm"‘.’” .plot -alt=26 in the 2fu||y
and B. Indeed, the PDF of the stretching raeof PV is developed stage. It is hard to distinguigh” and |wi” by
shiftgd ositivél compared with that 0? tr?zevorticit it solely looking at these pictures. Note that the threshold is
<hould kI)Oe notedythat tr?e slight difference in the PDFsy.Ieadghosen such that the volume enclosed is 1% for both fields. It
to a big difference in the long-time evolution. This is the 'S pos;sil_ale to distinguish the isosurfgcesm(z from those
second quantitative characterization that PVs are stretchecg Wl in thg early stage, but not in the .fuIIy developed
more intensely than the vorticity. stage. Recalling the fact that their dynamics are markedly
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FIG. 4. The PDFs of the cosines that the anglmakes withe; (solid), e, (dasheg ande; (dotted at timest=0, 2, 4, 6, 8, and 10.

different, the similarity of isosurface characteristics in turbu-rate of strain. This point has been studied in a different man-
lence is rather unexpected. ner in [3]. The latter correlationw-S is stronger than the
former w-S in the sense thatp,, increases whereas re-
mains finite, as the value of viscosity is decreased. This sug-
gests thatep, increases without bound whereasremains
In the above we have seen a big difference between voffinite in the limit of vanishing viscosity. Further numerical
ticity and passive vectors in turbulence starting from an ini-experiments will be necessary to confirm this trend at higher
tial condition and that this difference is pronounced at higheiReynolds numbers.
Reynolds numbers. We should ask whether such a difference We generate an initial condition of type II, which is given
is accidental, i.e., specific to this particular initial condition, by Eq.(2.2). We then generate the initial condition farby
or ubiquitous over a broad range of initial conditions. completely destroying the phases of the Fourier coefficients
Under the evolution of Navier-Stokes equations over fi-of @ as
nite time, correlation builds up both between the vorticity
and the rate of strain and between passive vectors and the w(k)=exp(i 8(k)) w(k), (2.9

B. A wider class of initial conditions
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FIG. 6. Isosurface plots diw|? (darkey and |w|? (lighter). (a)
where 6(k) denotes uniform pseudorandom numbers inAt t=2 in the early stage antb) att=6 in the fully developed
[0,27]. It is clear that the solenoidal conditidi-w=0 is  stage. The full computational b¢®,27]2 is shown. The thresholds
satisfied. are chosen such that the total volume enclosed inside the isosur-

We show in Fig. 7a) the time evolution of the total en- faces is 1% of the whole box in each case.
strophy(|2w|2>/2 together with the total passive vector vari-
ance(|w|*)/2 for ten different initial conditions oW. It is . yeq the enstrophy larger than the passive vector variance.
remarkable that in all the cases the normwofjrow faster

than the enstrophy in their long-time evolution. For the class We summarize our numerical results regarding finite-time
of initial conditions, we confirm that the vorticity grows evolution as follows: for a large class of solenoidal initial

faster than passive vectors in the case of a wider class é:[pndltlons, high-Reynolds-number turbulence satisfies
initial conditions.

Then, what happens if we choose the initial conditions for (wx, )2 > (| ew(x,1)[2) (2.10
w in an immediate vicinity ofw. To check this point we
performed computations, starting from yet another ten differ-
ent initial conditions withd(k) €[0,0.05< 2], that is, the in the long run, providedv(x,0) shares the Fourier spectra
phases randomized only slightly by 5%. As we can see ifwith w(x,0), but is substantially different from(x,0). This
Fig. 7(b) the passive vector variances deviate from the enproperty does not hold if we take initial conditiomgx,0)
strophy for these class of initial conditions and the majority\,ery close tow(x,0). While there are some cases where the
of them grow faster than the enstrophy at short times. AcClUgnstrophy becomes larger than the variance of PV at some
ally, if we examine Fig. tb) more carefully, we see that for stage of time development, the overall trend of dominance of
two cases out of ten initial conditions, the passive vectolyrowth in PVs over that of the vorticity is remarkable.
variance becomes a little bit smaller than the enstrophy inthe yjgreover, on top of making them share the spectrum with

early stage of time development. _ (x,0), if we impose restrictions ow(x,0) further, it may
We show one such example in FigaBin detail. We have g nossible that we make

checked in Fig. &) that even in the inviscid case the passive
vector variance is still smaller than the enstrophy. This
means that it is not the effect of finite Reynolds number that (lw(x,0)|3=(e(x,1)|?) (2.11
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40 @ ; ; P ary condition where the fluid is at rest at infinity. Using the
35| : Biot-Savart formula we havi9]

30
25

3 - R dy
(= 7P | [ 0T {9 % 01T,
(2.12

Ovv(t)

wherey=vy/|y|, &= w(X)/|w(x)|. Similarly, we find

B 3 A - dy
B(x)= EPJ [y 7 (1LY {@(x+y) X n(X)}]mg,
(2.13

where p=w(x)/|w(x)| and P is the principal value.

In EQ.(2.12), o(x+Yy) X &(x) is likely to be small ang is
small if the direction ofw(x) is smooth. On the other hand in
Eq. (2.13 there is no reason faw(x+Yy) X 5 (X) to become
small for smally even if the direction ofw(x) is smooth,
because the correlation betwees(x) and w(x) remains
10 weak. This lack of depleting mechanism qualitatively ac-

counts for the slower growth of the vorticity compared with

FIG. 7. Time evolution ofQp\(t) for ten different initial condi-  passive vectors.
tions (thin lines and that ofQ(t) (a thick line), where the phases of
w are (a) completely andb) slightly destroyed.

Ovv(t)
o - N w N [4,] [ -~ @

o
N
s
[=2]
«©

III. INFINITESIMAL TIME DEVELOPMENT
at short times. See, Appendix B for an example constructed
using the Taylor-Green vortex. For general incompressibl
flows, it is not known, but worthwhile to study under what

In the above we have seen that the difference in the be-
favior of the vorticity and PVs can be partially and qualita-

conditions(2.11) holds valid. tively explained on the basis of anglys[s of the Blot-Savart
formula. However, we should keep in mind that this formula
C. A qualitative explanation is kinematic and in this sense incorporates only infinitesimal

. . evolution of the vorticity equation, as represented by its
At a crude level, we can explain the above difference a%ight-hand side y €d P y

follows. For simplicity we work in the infinite space bound- ~\\1a 4sk in this section whether we can characterize the

. significant difference found in long-time evolution solely by
7| studying the infinitesimal-time development. To this end, we
6 compare the PDFs of the growth rates of passive vector vari-
S> 5 ance with the growth rates of total enstrophy. The passive
& 4 vectors are taken in the vicinity of the vorticity in the three-
KON dimensional incompressible vector space. There are two dif-
Q , ferent kinds of ways to specify the vorticity around which
; PDFs are generatedil) As fully developed turbulence and
(2) as one of the smooth random initial conditions. This
% 2 s 6 8 10 analysis was carried out for the calculation with 428id
! points because of the computational task to produce the PDF
28 ——————————————— of growth rates is formidable. The low resolution poses no

26 |
24
22
2+
18
16
14
12
1

restriction on(2) but limits the Reynolds number to low
values for(1). Needless to mention, the former choice is
dynamically influenced by the Navier-Stokes equations, but
the latter one has no such dynamical property. It is of interest
to study how this difference in the choice of the vorticity
leads to the statistical property of PVs around it.

The growth rates, of the total enstrophy is defined as

0(1).Opv(t)

0'80 02 04 06 08 } 12 14 16 16 2 1 d (w'S a)>
7o(t)= o | ef?)=2———,
(lel?) (lel?)

FIG. 8. An example of a comparison whe@t) (solid) be-
comes larger tha®py(t) (dashed at some stage(a) the viscous
case andb) the early stage inviscid case. whereas that of passive vector variance as
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(t) 1 d <| |2> 2<W~ S. W> O:i (a)TurlbuIence' _
op)= T g\ W) = e o -1 Y e
(lwj?) dt (lwl?) 035 | B
03 '
We consider passive vectors in the vicinitywfin solenoidal =~ 025
vector space, under the conditi¢jw] A =(|w|?). E— 02
In practice, we generat® as 0145 |
~ ~ 0.1
w(k)=exdi (k)] w(k), (3. 005
where (k) e[0,ex27]. We have tried a number of differ- % = 4 o -1 2 s
ent values of, which aree=1 (the completely randomized X
casg, 0.7, 0.5, 0.2, 0.1, and 0.05. For each choiceepf 045 [
50000 realizations are used to produce PDFs. 0.4 |(?) Random flelds
Becausee is a measure of scrambledness, we have 035 | £
03| :
(W-SW)—(w-S-w) as e—0, (3.2 N 0By
A o02r R
where the bar denotes ensemble average and 015 |
01
(Ww-S'w)—0 as e—1. (3.3 005 1
0
Let us consider the PDP(X) of o byt 23
FIG. 9. The PDFs of stretching rates of PVs for 0.05, 0.10,
Xzi (W-S-w) B (W-S-w) (3.4 0.20, 0.50, 0.70, 1.0: aroun@) e, which is a solution of the
ox\ (|w?) (Iw?) ' ' Navier-Stokes equations, anl) w, which is a random field. A
standard normal distribution, also depicted as a solid curve, is vir-
whereoy is the standard deviation of tually invisible because the PDFs are so close to it in both cases.
j 2 smaller for larger values of. Two features that distinguish
oy=2 \/( e B kAl . (3.5 turbulence and a random field should be noted. First, the
(lw|?) (Iw|?) mean valuem decays more quickly for the case of a random
) ] field than for the case of turbulence. This can be attributed to
Note thatP(X) has zero mean and unit variance. the presence of the vorticity-strain correlation in turbulence.

~We show in Fig. @) the PDFP(X) for the casgl1) and  second,o for random fields are much larger than that for
Fig. 9(b) for the case(2). It should be noted that the PDFs trpylence because the denominator becomes small for
show a normalGaussiahn distribution, not only for(2) but  gmg]|e.
also for (1). The normal distribution was expected f() The present result suggests that it is virtually impossible
because the vorticity is just one of the initial conditions andy explain the big difference in the behavior of the vorticity
therefore contains no dynamical information of the Navier-ang pys in their long-time evolution by solely looking at
Stokes equations. However, fét) where the vorticity is  thejr infinitesimal-time development.
taken from the fully developed turbulence, it was anticipated

that the PI.DF.of Fhe stretching rates of PVs might have a IV. THE INVISCID PROBLEM
skewness indicating greater stretching rates than that of the
enstrophy. We have seen that it is necessary to take into account the
To make the data analysis more quantitatively, we examlong-time evolution to explain the big difference between the
ine two statistical quantities, the average vorticity and passive vector. The conventional alignment
(w-S-w) TABLE Il. Statistics of growth rates of PVs.
m=-———- (3.6
(@S ) Turbulence Random fields
and the standard deviation € m o m o
2 0.05 5.7x 10 2 7.6x10°2 1.0 2.4
o= \/(< S~ (WS W) (37 010 5.6<10°? 4.8x10°? 1.0 7.5
(@S @) —(W-S-w))? 0.20 5.2 10 2 3.3x1072 7.7x10°1 2.6
0.50 2.5¢10°2 1.5x10 2 -1.0x10? 1.2
both have been nondimensionalized against the enstrophy7o 8.2 1073 9.3x10°3 —8.0%x10°3 1.4
growth rate. The results are summarized in Table Il. Both for gg 7.6<10°7 7.6X10°3 6.3X10°3 1.4

turbulence and a random field, all in afh and ¢ become
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analysis, that is, the comparison of the vorticity with the
eigenvectors of the rate-of-strain tensor is not sufficiently
useful in this respect, because it is relevant to instantaneous-
time development only. In order to characterize the vortex
stretching process better we will consider in this section an
alternative alignment problem.

PDF

A. Numerical methods

We are interested in the Jacobian matrix relating spatial ob—_ .
. . -1 -08-06-04-02 0 02 04 06 08 1
and material coordinates, cos(®E)
3 IX; (ij=123) @.1) ! (b)
L= — | J = . .
1) ) 1649
ﬁaj 08 |
Here we restrict ourselves to the consideration of inviscid o5 | 4
flows. The Jacobian matrix satisfies the following equations: A Zostmtp Ry
04 ]
0"‘]” n (9\]” du; 4.9
Tt U = gk 42 oz
where summation is implicit on repeated indices. To treat it 0 08 060402 0 02 04 06 08 1

cos(w,E)

numerically, it is useful to note that
D ] FIG. 10. Alignment of(a) w and(b) w with eigenvectors of the
N T .
— 209 for j=1,2,3, 4.3 Cauchy-Green tensar'J, E, (solid), E4 (dasheg andE,, (dot-
Dt (?Xi te(]).

which can be shown readily from E(‘,ﬂ-.Z). Therefore, if we  and their product is unitwl[gyz 1. There are orthogona|
take as usual;; = ¢;; att=0, then we have eigenvectorE,, ,E,E, associated with them.
In view of Eq. (4.8) we need to consider alignment of

Oij _ (4.4) wy with E,,Ez, or E, to estimate the enstrophy
X growth. This alignment problem inherently dictates the influ-

ence of the initial condition on the enstrophy evolution later
at later times. We may thus regard each columdipfas @  on. To study this alignment problem we need to evaluate the
solenoidal vector, which allows us to reduce memory sizenitial vorticity for each fluid particle. But it is not easy to
and computations in their calculations. Introducing track quite a large number of fluid particles accurately. Here,

to avoid the difficulty associated with particle tracking we

(W))i=Jij, (4.5 simply invert the Jacobian matrix, whose determinant is
. 1(#+0), as
we can write
W wo(a)=J tw(at). (4.9
—L=Vx(uxw,) for j=12,3. (4.6 o . o
at Likewise similar to Eq.(4.8) we can write for material line

o ] ~_ elementgthat is, the passive vectors in the case of inviscid
On top of the vorticity equation, we have three more similarfjgys)

equations to be solved simultaneously.
[w(a,t)|?=wg(a)J"Iwy(a). (4.10
B. An alternative alignment

In Fig. 10@ we show the PDF of the cosines of angles
betweerk,, E;z, andE, with w att=0.75. The PDFs show

w(at)=Jwy(a), (4.7  thatw has a tendency to be parallel 3, and it also has a

tendency to be perpendicular E),. Thus this method cap-

which is a first integral of the Euler equations. Using it, wetures another aspect of depleted nonlinearity in that, it shows

Let us recall the Cauchy formula

can express the enstrophy in material coordinates as that intense vorticity is correlated with the most compressing
eigenvector of the Cauchy-Green tensor. Egrirection, no
|ow(a,t)]2= wo(a) "I Jewy(a). (4.8 clear characteristic feature is observed. We should, however,

keep in mind that this alignment feature is not so strong as
Here the matrixJ'J is symmetric and is a positive-definite the one observed in the conventional alignment analysis in
real matrix, which is known as the Cauchy-Green tensor, sedsigs. 2 and Jcompare the ordinate axis in Figs.)1h Fig.
e.g.,[17]. It has three eigenvalues,B,y (a=pB=vy>0) 10(b) we show the PDF of the cosines of angles between
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V. SUMMARY AND DISCUSSION

In order to characterize the effect of nonlinear constraint
imposed by the Biot-Savart formula, we have compared time
evolution of the vorticity and passive vectors in detail using
numerical simulations of Navier-Stokes turbulence.

For finite- (or, long- time evolution, we find that the PVs
are stretched more intensely than the vorticity. A number of
gquantitative evidences are available. First, as far as the
present numerical simulations which cover upRp~100
are concernedy(|w|?) keeps growing with decreasing vis-
cosity, whereas/{|w|?) appears to be limited in growth. Sec-
ond, the PDF of the stretching rate of PVs is shifted for more
intense stretching compared with that of the vorticity.

Using various initial conditions, we find for a majority
class of passive vectors

(WO, t)[2y> ([ ew(x,1)[?) (5.1)

in the long run. But, this inequality does not necessarily hold
valid at all times for certain initial conditions.

The point is made clear by considering infinitesinak.,
shorty time evolution. We have investigated the PDFs of the
growth rates of the PV variance

1 d, ., (wSw
w2 2

It is found that the PDF is close to a Gaussian distribution,
even when the samples are taken around the vorticity, which
is a solution of the Navier-Stokes equations. This implies
that there are infinitely many PVs that grow more slowly
FIG. 11. Comparison of isosurface plots ofifg) (lighten) with ~ than the vorticity.
(@ |w|? (darkey and (b) |w|? (darked. The thresholds chosen are ~ Then, the apparent dominance of the growth of PVs over
0.2 (maje|?), 0.2 (majw?), and 0.3 (maxtr(J7J)]). that of the vorticity is a consequence of correlation built up
between the vorticity and the rate of strain over finite-time
evolution. It is difficult to get a proper estimate of the vortex

and E,, Eﬁ' a”‘?' E?’ at, the' same time. Th? P[,)FS show stretching term by purely kinematic methods, that is, by han-
almost uniform distributions in all the three directions, mak—d“ng the Biot-Savart law only.

ing a sharp contrast to the case of vorticity. Therefore, in the g4, treating finite-time evolution, use of a kind of align-

analysis of the alignment problem associated with thément problem of the Cauchy-Green tensor is proposed. As a

Cauchy-Green tensor, depletion of nonlinearity can be obfirst step, we have tested it for the Euler equations and ob-

served more clearly than in that associated with the rate-ofserved that it is found that vorticity tends to align itself with

strain tensor. the most compressing eigenvector of the Cauchy-Green ten-
In Fig. 1@ we compare the isosurfaces fab|? with  sor. In this sense this method captures depletion of nonlin-

those of trg"J). Layerlike structures are predominant in earity clearly and its detailed application may be useful for

both fields and the locations are overlapping. In Figtbll the characterization of flow structure.

the isosurface ofw|? is compared with that of td7J). The It may be useful to state physical meanings of passive

regions with intensd}w|2 are again layerlike but they do not vectorw here. One is the kinematic magnetohydrodynamics

appear to overlap with the regions with largeJfq). How-  (MHD) equations. This is obtained by dropping the Lorentz

ever, unfortunately we have at present no explanation for itforce term 8- V)B and replacind by w in the usual set of
Finally, a comparison of the two alignment problems is inMHD equations,

order. The conventional alignment is instantaneous and

mostly kinematic, whereas the alignment problem considered ‘lu+ (u-V)u=—Vp+(B-V)B+vAu (5.3

here is cumulative and dynamical in that it dictates finite- ot '

time evolution. The method described here may be regarded B

as a first step toward extracting Lagrangian information and _

should be applied for various fluid flows. o T(U-V)B=(B-V)utvAB. 5.4

opy(t) =
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The other one is the material line elements for the case
=0.

As mentioned above, the spatial resolution employed in
this work is not very high, particularly in the production of
the PDFs of the stretching rates of PVs. It is of interest to
examine whether the results may change qualitatively or not
in turbulence at higher Reynolds numbers.

(). 1ps(1)
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An example can be constructed where a class of passive
vectorsw grows faster than the vorticity in the early stage
by making use of the Taylor-Green vortex. We take

In two dimensions, a similar active-passive comparison is

APPENDIX A: TWO-DIMENSIONAL NAVIER-STOKES
EQUATIONS

well known (see, for exampld,18,19). In this case vorticity (C—B)sinx cosy cosz
w and a passive scal@rsatisfy the same form of equations, w_| (A=C)cosxsiny cosz -
Jw (B—A)cosx cosy sinz
E+(u-V)w=vAw (A1)
and
and .
(R—=Q)sin(x+ ¢)cody+ ¢)cogz+ ¢)
O (V) o=vr 0 (A2) w=| (P=Ricosxtg)siny+ gcoszt ) |
o ' (Q—P)cogx+ p)cody+ ¢)sin(z+ )
(B2)

whereV -u=0.

The dissipation rate of the enstrophy is given by whereA,B,C andP,Q,R are amplitudes of the vorticity and

a passive vector, respectively. In this case we can see easily

d/w?
n=—a<7>=—V<|Vw|2> (a3 "

d /e d/[w?
. . —{—)==({—5—)=0. (B3)
and that of passive scalar variance by dt\ 2 dt\ 2

92 ) In general, the following formulas can be derived for the
Mps= — a<7> =(|V6|?). (A4)  second time derivatives of the enstrophljke) quantities:
. . . . . d? | |wl|?
Numerical simulations starting from a random initial con- —z<—
dition, which is localized in the low wave number compo- dt"} 2
nents, are shown in Fig. 12 for three different values of
viscosity »=1x10"%, 2x10 4 4x10 %4 Unlike the
three-dimensional(3D) counterpart (Figs. 1, not only
{|Vw|?) but also »(|V|?) depends on viscosity only
weakly; the former changes by about 28% and the latter b
24% when the value of viscosity changes by a factor of 4.

>=<<s-w>-<s-w>>—<w~P~w> (B2)

TABLE Ill. Relationship between positive-definite conserved
guantities and depletion of nonlinearity.

This may be interpreted as follows. Not only Eé1) but Active Passive

also Eq.(A2) possesses a positive-definite conserved quarsbD {lu]? (u-él) (| w|?) is meaningful

tity; there are two inviscid conservation lays?) and( 6?) (U- @) (| 81|?) is meaningless
underlying Eqs(Al) and (A2). These two conserved quan- 2p (|ul® (6?) (| Vw|?) is meaningful
tities give » and npy physical meaninggsee Table Il as (0?) »(|V 6]?) is meaningful

their rates of dissipation.
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d? [ |w|? | X w|?
ge\ 2 =W (S w) —(w-P-w)+ —
+(@wXW)-S-w. (B5)

We have evaluated these by using computer algebraev
after eliminatingC and R using C=—(A+B) and R=
—(P+Q). The final results are

d® [lo®\ 5 -
W T ZaA-FAB-FB) (B6)
and
d? /|w? 1
W<%> =-— 3—2(10A2PQ+ 7B?P?+ 7A%Q%+ 10B?Q?

+10B?PQ+16QBAP+ 10A%P2+ 10P°BA
1
+10Q%BA)cos(¢) + 3—2(8QZBA+ 8B2%Q?

+8A%PQ+2QBAP+11B%P?+8P2BA
+11A%Q*+8B?PQ+8A’P?)cos (¢)
1

* 128

(18P?BA+9B?P?+ 18Q°BA

+18B?PQ+ 36QBAP+ 18A%PQ+ 18B2Q?
+9A%Q%+18A%P?). (B7)

PHYSICAL REVIEW E 65 046304

The condition that they share their Fourier spectrum is

A%+ AB+B?=P?+PQ+ Q2. (B8)
By introducing a set of new variables
A=(a—b)/\2, B=(a+b)/y2,
P=(p-a)/\2, Q=(p+a)/\2, (B9)
the above condition is reduced to
3a%+b?=3p2+q-°. (B10)

So, the amplitudes of the passive vector can be parametrized

as

p=/3a’+b? cosé,

gq= J3aZ+bZsiné. (B11

Using them we find
d? [|w|? d? || w|? ~o B12
a2\ 2 ) ae\ 2 /)7° (B12)

if cos?p=1—(,/30/6)=0.91. Therefore for the claséB2)
around Eq(B1), PVs grow more intensely than the vorticity
in the initial stage of development, |i| is not close tom/2.
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