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Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows

Koji Ohkitani
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

~Received 28 September 2001; published 28 March 2002!

The nonlinear vortex stretching in incompressible Navier-Stokes turbulence is compared with a linear
stretching process of passive vectors~PVs!. In particular, we pay special attention to the difference of these
processes under long and short time evolutions. For finite time evolution, we confirm our previous finding that
the stretching effect of vorticity is weaker than that of general passive vectors for a majority of the initial
conditions with the same energy spectra. The above difference can be explained qualitatively by examining the
Biot-Savart formula. In order to see to what extent infinitesimal time development explains the above differ-
ence, we examine the probability density functions~PDFs! of the stretching rates of the passive vectors in the
vicinity of a solution of Navier-Stokes equations. It is found that the PDFs are found to have a Gaussian
distribution, suggesting that there are equally many PVs that stretched less and more than the vorticity. This
suggests the importance of the vorticity-strain correlation built up over finite time in turbulence. We also
discuss the case of Euler equations, where the dynamics of the Jacobian matrix relating the physical and
material coordinates is examined numerically. A kind of alignment problem associated with the Cauchy-Green
tensor is proposed and studied using the results of numerical simulations. It is found that vorticity tends to
align itself with the most compressing eigenvector of the Cauchy-Green tensor. A two-dimensional counterpart
of active-passive comparison is briefly studied. There is no essential difference between stretching of vorticity
gradients and that of passive scalar gradients and a physical interpretation is given to it.

DOI: 10.1103/PhysRevE.65.046304 PACS number~s!: 47.27.Ak, 47.10.1g
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I. INTRODUCTION

By extensive numerical and experimental investigatio
performed in the past decades, it is understood at least q
tatively that there are coherent vortex structures in tur
lence. In the case of homogeneous and isotropic turbulen
is well known that there are tubular vortex structures in
fully developed stage~e.g., see@1#!.

The implications of the presence of the intense, localiz
vortex structures are multifold. First, they are believed to
responsible for transferring mass and heat in actual envi
ment. Second, because compactly supported vortices in
tally inviscid flows remain so all the time, localized vortice
may be useful to some extent to economize the descriptio
turbulence at high Reynolds numbers@2#. Third, and most
fundamental of all, their geometrical structure is believed
influence the net strength of nonlinearity. Such a structur
closely connected with the weakening effects of the app
ently quadratic nonlinear stretching, a phenomenon so
times referred to asdepletion of nonlinearity. This notion has
been used in a number of similar but different meanin
Originally, it was introduced in@3#, where it was called ‘‘de-
pression of nonlinearity,’’ to mean that spatial averages of
nonlinear terms such asu3v calculated from turbulence ar
smaller than those obtained from a random velocity fie
which obeys a Gaussian distribution. The buildup of m
ments including odd-order ones was studied in@4–6# nu-
merically and experimentally. Particularly the ‘‘nonlinarit
reduction’’ of the vortex stretching tensor, that is, the obs
vation thatuS•vu is smaller than the product of norms ofS
andv, was studied in detail. It was also shown by a con
tional sampling method that such reduction is more sign
cant in vorticity-dominated regions than in strain-domina
regions. In this paper, we also focus on the vortex stretch
1063-651X/2002/65~4!/046304~12!/$20.00 65 0463
s
li-
-
it

e

d
e
n-
to-

of

o
is
r-
e-

.

e

,
-

r-

-
-
d
g

termv•S•v. To clarify the presence or absence of the Bio
Savart constraintS5S@v#, we compare the vorticity with
passive vectors and examine how the constraint makes
vortex stretching term smaller thanw•S•w, wherew is an
arbitrary passive vector. It is clear that the direction of v
ticity is important here and this point was highlighted ma
ematically by showing that it can be used to monitor reg
larity of the Navier-Stokes equations@7# and of the Euler
equations@8# ~see also@9#!.

Recently, we have performed an investigation to illustr
how the stretching effect of vorticity is made weaker by no
linearity, that is, a kinematic constraint imposed by the Bi
Savart law@10#. This was performed by comparing vorte
stretching with stretching of passive vectors in turbulence

The three-dimensional Navier-Stokes equations in vor
ity form read

]v

]t
1~u•“ !v5~v•“ !u1n“2v, ~1.1!

“•u5“•v50, v5“3u, ~1.2!

and the equations for the passive vectorsw are @11#

]w

]t
1~u•“ !w5~w•“ !u1n“2w, ~1.3!

“•w50. ~1.4!

The difference between them is that the stretching term
Eq. ~1.1! is constrained by the Biot-Savart relationsh
whereas that of Eq.~1.3! is not. The Biot-Savart formula
©2002 The American Physical Society04-1
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KOJI OHKITANI PHYSICAL REVIEW E 65 046304
does a number of things; it makes the vortex stretching t
nonlinear and conserve total energy. Thus, Eq.~1.1! has as
inviscid invariants

E uuu2dx, E u•vdx, ~1.5!

while Eq. ~1.3! has

E u•wdx, E A•wdx, ~1.6!

wherew5“3A. The comparison was performed by usin
the norm of v with that of w on the basis of numerica
solutions of the Navier-Stokes equations. We note that
characterization concerns finite-~i.e., long-! time evolution.

The first objective of this paper is to study depletion
nonlinearity in detail by studying the difference between
lutions of Eqs.~1.1! and ~1.3!. The second one is to stud
infinitesimal-time evolution by examining the stretchin
rates of both the fields, thereby making clear the distinct
between finite- and infinitesimal-time evolutions.

This paper is organized as follows. In Sec. II, we descr
detailed analyses of the long-time evolutions of the Nav
Stokes flows. In Sec. III, we study infinitesimal-time evol
tion by examining the stretching rates of vorticity and pa
sive vectors~PVs!. In Sec. IV, we consider the inviscid
flows, that is, flows governed by the Euler equations. Int
ducing a kind of alignment problem associated with t
Cauchy-Green tensor, we provide an alternative characte
tion of depleted nonlinearity. Section V is devoted to su
mary and discussion. In Appendix A, we address a sim
problem in two dimensions.

II. FINITE-TIME EVOLUTION: VISCOUS PROBLEM

We will treat two kinds of initial conditions. The first one
employed in@10#, has a compactly supported excitation
the low wave number modes, whose spectrum of energ
given by

E~k!5H k2 only for k51,2,3,

0 otherwise.
~2.1!

The other one has also localized excitation in wave num
space but is not compactly supported,

E~k!5c1k2 exp~2k2!, ~2.2!

where c1 is a constant such that^uvu2&/251. Hereafter, a
spatial average over the periodic box@0,2p#3 is denoted by
brackets throughout this paper.

We review the previous results and consider how th
change with increasing Reynolds number for the type-I c
ditions. We also examine how the results change usin
wider class of initial conditions of the type II.

A. Higher Reynolds numbers

Clearly, if the initial conditionsv(x,0) andw(x,0) are
exactly the same, then the solutions are the same by
04630
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uniqueness argument for the solutions of Eq.~1.1!. Concern-
ing Eqs.~1.1! and~1.3!, a question raised in@10# is how can
their subsequent time evolution differ, if the initial condition
are similar but not exactly the same in the sense that t
only share the Fourier spectrum of energy.

For the initial condition of type I, we compute using fou
different values of kinematic viscosityn5531023, 2.5
31023, 1.531023, and 131023. The computations are per
formed by a standard pseudospectral method with alias
errors removed by the 2/3 law. Thus, the maximum wa
number isN/3 for calculations with grid pointsN3. Time
marching is performed by the Runge-Kutta method. Wh
we solve Eqs.~1.1! and ~1.3! simultaneously, computation
with N5128 are done in double precision arithmetic a
those with N5256 in single precision, because a lar
amount of memory is required to solve them simultaneou
We have checked that no essential differences in the t
evolution were found between computations in single a
double precision forN5128 computations. We have als
checked that no differences were found between comp
tions of Navier-Stokes flows in single and double precis
at N5256 resolution. The numerical parameters are sum
rized in Table I. The Reynolds numbers based on the Ta
microscale areRl545.8, 67.3, 86.3, and 101.3 att54 and
Rl533.3, 45.7, 55.1, and 66.1 att56.

We show in Fig. 1~a! time evolution of the energy dissi

TABLE I. Numerical parameters for type-I conditions.

n 531023 2.531023 1.531023 1.31023

dt 531023 531023 2.31023 1.31023

N 128 128 256 256

FIG. 1. Time evolution of~a! the energy dissipation ratee(t)
and ~b! a corresponding quantityePV(t) for PVs. The values of
viscosity aren5531023 ~solid!, 2.531023 ~dashed!, 1.531023

~short-dashed!, and 1.031023 ~dotted!.
4-2
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pation rate

e~ t !5n^uvu2& ~2.3!

for the four different values of viscosity. Except for the ca
of the largest value of viscosity, the peak value changes o
a little, that is, less than 25%, while the value of viscosity
changed by a factor of 2.5. The time of peak dissipation ra
does not change significantly either. This does not imply,
is consistent with a property of the energy dissipation r
that behaves independent of the viscosity in the limitn→0.

A corresponding spatial average forw,

ePV~ t !5n^uwu2&, ~2.4!

is shown in Fig. 1~b!. In contrast to the energy dissipatio
rate, it is remarkable that this quantity keeps increasing a
peak value as viscosity is decreased. It shows no tren
tending to a limiting behavior asn→0. The difference in the
limiting behavior between Eqs.~2.3! and ~2.4! is the first
evidence that the passive vectorw is more intensely stretche
than v. As mentioned above, the only difference betwe
Eqs. ~1.1! and ~1.3! is the presence of energy conservati
for the former. So, the above difference in behavior in
limit of small viscosity comes from the fact that Eq.~2.3! is
a well-defined physically meaningful quantity, whereas E
~2.4! is not ~see Table III!. This result strengthens the findin
reported in@10# and can be interpreted to indicate that und
finite-time evolution, thev-S correlation is developed mor
strongly than thew-S correlation.

In Fig. 2~a! we show the energy spectrum

E~k!5
1

2 (
k<uku,k11

uũ~k!u2 ~2.5!

FIG. 2. The energy spectra~a! E(k) and ~b! EPV(k). The line
types are the same as in Fig. 1.
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at time t510 after the turbulence has fully developed. Th
figure shows that at higher Reynolds number the shape o
spectrum is compatible with a short Kolmogorov’s 5/3 rang
while it is hard to detect it clearly because of rather limit
resolution used here. In comparison, we show in Fig. 2~b! a
corresponding spectrum for passive vector

EPV~k!5
1

2 (
k<uku,k11

uÃ~k!u2. ~2.6!

At first glance this figure does not look very different fro
the previous one. By examining them more carefully we fi
that the amplitude is much larger than that of Fig. 2~a! and a
power law range is less clearly seen here. Again, this st
from the lack of energy conservation in the stretching term
Eq. ~1.3!.

Next, we examine the time evolution of the statistic
properties on the alignment process of the vorticity and p
sive vectors with the rate-of-strain tensor and compare th
with the results of@5,6#.

In Fig. 3 we show the probability density function
~PDFs! of the cosines of the angle between the vorticity a
each eigenvector ofS. As is well known, a strong preferenc
of the vorticity to align itself with the intermediate eigenve
tor is observed. It should be noted that this property is
served before the time of maximum enstrophyt'3 and per-
sists during the decaying process. In Fig. 4 we show
corresponding PDFs of the angle between the passive ve
and each eigenvectorS. Unlike Fig. 3 the property change
in time. In the early stage (t52), passive vectors strongl
align themselves with the intermediate eigenvector, just l
the vorticity. However, after the time of maximum enstrop
the preference to the intermediate strain is getting wea
while the preference to the most expanding strain stron
At t510 the PDFs associated with the largest and the in
mediate strains almost collapse. As time goes on, the stre
ing effect is enhanced by redirecting the passive vector to
most expanding strain eigenvector.

There are a number of investigations on the stretching
material line elements, that is, passive vectorswithout diffu-
sivity ~see, e.g.,@12#.! It was reported in@13# that they have
a tendency to align themselves with the most expand
strain eigenvector~see@4,5,14# for relevant discussions!. We
note that an accurate estimate of material line stretching
quires special care of numerical treatment@15#. We also note
that a comparison was made of active and passive vecto
a different formulation in@16#.

We consider the stretching rates of vorticitya and that of
passive vectorb, which are defined by

a~x,t !5
v•S•v

uvu2
~2.7!

and

b~x,t !5
w•S•w

uwu2
. ~2.8!
4-3
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FIG. 3. The PDFs of the cosines that the anglev makes withe1 ~solid!, e2 ~dashed!, ande3 ~dotted!, at timest50, 2, 4, 6, 8, and 10.
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Their PDFs are shown in Fig. 5~a! in a normalized form
as ã5a/A^uvu2& and b̃5b/A^uvu2&, together with
that of the three eigenvalues of the rate-of-str
tensor l̃15l1 /A^uvu2&, l̃25l2 /A^uvu2&, and l̃3

5l3 /A^uvu2&. Not surprisingly, the PDF ofã is close to that
of l̃2. It was unexpected, however, that the PDF ofb̃ is also
fairly close tol2. In Fig. 5~b! we show an enlarged plot ofa

and b̃. Indeed, the PDF of the stretching rateb̃ of PV is
shifted positively compared with that of the vorticity.
should be noted that the slight difference in the PDFs le
to a big difference in the long-time evolution. This is th
second quantitative characterization that PVs are stretc
more intensely than the vorticity.
04630
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It is of interest to examine how regions with intenseuvu
anduwu look like in physical space. We show in Fig. 6~a! the
isosurface plots ofuvu2 anduwu2 at timet52, well before the
enstrophy attains its maximum. Even in this early stage
of vorticity tubes are already formed inuvu. On the other
hand, in uwu2, layerlike structures are apparently predom
nant. In Fig. 6~b! is shown a similar plot att56 in the fully
developed stage. It is hard to distinguishuvu2 and uwu2 by
solely looking at these pictures. Note that the threshold
chosen such that the volume enclosed is 1% for both field
is possible to distinguish the isosurfaces ofuvu2 from those
of uwu2 in the early stage, but not in the fully develope
stage. Recalling the fact that their dynamics are marke
4-4
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FIG. 4. The PDFs of the cosines that the anglew makes withe1 ~solid!, e2 ~dashed!, ande3 ~dotted! at timest50, 2, 4, 6, 8, and 10.
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different, the similarity of isosurface characteristics in turb
lence is rather unexpected.

B. A wider class of initial conditions

In the above we have seen a big difference between
ticity and passive vectors in turbulence starting from an
tial condition and that this difference is pronounced at hig
Reynolds numbers. We should ask whether such a differe
is accidental, i.e., specific to this particular initial conditio
or ubiquitous over a broad range of initial conditions.

Under the evolution of Navier-Stokes equations over
nite time, correlation builds up both between the vortic
and the rate of strain and between passive vectors and
04630
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rate of strain. This point has been studied in a different m
ner in @3#. The latter correlationw-S is stronger than the
former v-S in the sense thatePV increases wherease re-
mains finite, as the value of viscosity is decreased. This s
gests thatePV increases without bound wherease remains
finite in the limit of vanishing viscosity. Further numerica
experiments will be necessary to confirm this trend at hig
Reynolds numbers.

We generate an initial condition of type II, which is give
by Eq. ~2.2!. We then generate the initial condition forw by
completely destroying the phases of the Fourier coefficie
of v as

w̃~k!5exp~ iu~k!!ṽ~k!, ~2.9!
4-5
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KOJI OHKITANI PHYSICAL REVIEW E 65 046304
where u(k) denotes uniform pseudorandom numbers
@0,2p#. It is clear that the solenoidal condition“•w50 is
satisfied.

We show in Fig. 7~a! the time evolution of the total en
strophy^uvu2&/2 together with the total passive vector va
ance^uwu2&/2 for ten different initial conditions ofw. It is
remarkable that in all the cases the norm ofw grow faster
than the enstrophy in their long-time evolution. For the cla
of initial conditions, we confirm that the vorticity grow
faster than passive vectors in the case of a wider clas
initial conditions.

Then, what happens if we choose the initial conditions
w in an immediate vicinity ofv. To check this point we
performed computations, starting from yet another ten dif
ent initial conditions withu(k)P@0,0.0532p#, that is, the
phases randomized only slightly by 5%. As we can see
Fig. 7~b! the passive vector variances deviate from the
strophy for these class of initial conditions and the major
of them grow faster than the enstrophy at short times. Ac
ally, if we examine Fig. 7~b! more carefully, we see that fo
two cases out of ten initial conditions, the passive vec
variance becomes a little bit smaller than the enstrophy in
early stage of time development.

We show one such example in Fig. 8~a! in detail. We have
checked in Fig. 8~b! that even in the inviscid case the passi
vector variance is still smaller than the enstrophy. T
means that it is not the effect of finite Reynolds number t

FIG. 5. The PDFs of~a! the stretching ratesã ~dotted!, b̃ ~dash-

dotted!, and three eigenvaluesl̃1 ~solid!, l̃2 ~dashed!, and l̃3

~short-dashed! of the rate-of-strain tensor and~b! the enlargement

for ã ~solid! and b̃ ~dashed!.
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makes the enstrophy larger than the passive vector varia
We summarize our numerical results regarding finite-ti

evolution as follows: for a large class of solenoidal initi
conditions, high-Reynolds-number turbulence satisfies

^uw~x,t !u2&.^uv~x,t !u2& ~2.10!

in the long run, providedw(x,0) shares the Fourier spectr
with v(x,0), but is substantially different fromv(x,0). This
property does not hold if we take initial conditionsw(x,0)
very close tov(x,0). While there are some cases where
enstrophy becomes larger than the variance of PV at s
stage of time development, the overall trend of dominance
growth in PVs over that of the vorticity is remarkable.

Moreover, on top of making them share the spectrum w
v(x,0), if we impose restrictions onw(x,0) further, it may
be possible that we make

^uw~x,t !u2&>^uv~x,t !u2& ~2.11!

FIG. 6. Isosurface plots ofuvu2 ~darker! and uwu2 ~lighter!. ~a!
At t52 in the early stage and~b! at t56 in the fully developed
stage. The full computational box@0,2p#3 is shown. The thresholds
are chosen such that the total volume enclosed inside the iso
faces is 1% of the whole box in each case.
4-6
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at short times. See, Appendix B for an example construc
using the Taylor-Green vortex. For general incompress
flows, it is not known, but worthwhile to study under wh
conditions~2.11! holds valid.

C. A qualitative explanation

At a crude level, we can explain the above difference
follows. For simplicity we work in the infinite space bound

FIG. 7. Time evolution ofQPV(t) for ten different initial condi-
tions ~thin lines! and that ofQ(t) ~a thick line!, where the phases o
w are ~a! completely and~b! slightly destroyed.

FIG. 8. An example of a comparison whereQ(t) ~solid! be-
comes larger thanQPV(t) ~dashed! at some stage;~a! the viscous
case and~b! the early stage inviscid case.
04630
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ary condition where the fluid is at rest at infinity. Using th
Biot-Savart formula we have@9#

a~x!5
3

4p
PE @ ŷ•j~x!#@ ŷ•$v~x1y!3j~x!%#

dy

uyu3
,

~2.12!

whereŷ[y/uyu, j[v(x)/uv(x)u. Similarly, we find

b~x!5
3

4p
PE @ ŷ•h ~x!#@ ŷ•$v~x1y!3h~x!%#

dy

uyu3
,

~2.13!

whereh[w(x)/uw(x)u and P is the principal value.
In Eq. ~2.12!, v(x1y)3j(x) is likely to be small andy is

small if the direction ofv(x) is smooth. On the other hand i
Eq. ~2.13! there is no reason forv(x1y)3h (x) to become
small for smally even if the direction ofw(x) is smooth,
because the correlation betweenv(x) and w(x) remains
weak. This lack of depleting mechanism qualitatively a
counts for the slower growth of the vorticity compared wi
passive vectors.

III. INFINITESIMAL TIME DEVELOPMENT

In the above we have seen that the difference in the
havior of the vorticity and PVs can be partially and qualit
tively explained on the basis of analysis of the Biot-Sav
formula. However, we should keep in mind that this formu
is kinematic and in this sense incorporates only infinitesim
evolution of the vorticity equation, as represented by
right-hand side.

We ask in this section whether we can characterize
significant difference found in long-time evolution solely b
studying the infinitesimal-time development. To this end,
compare the PDFs of the growth rates of passive vector v
ance with the growth rates of total enstrophy. The pass
vectors are taken in the vicinity of the vorticity in the thre
dimensional incompressible vector space. There are two
ferent kinds of ways to specify the vorticity around whic
PDFs are generated.~1! As fully developed turbulence an
~2! as one of the smooth random initial conditions. Th
analysis was carried out for the calculation with 1283 grid
points because of the computational task to produce the P
of growth rates is formidable. The low resolution poses
restriction on ~2! but limits the Reynolds number to low
values for ~1!. Needless to mention, the former choice
dynamically influenced by the Navier-Stokes equations,
the latter one has no such dynamical property. It is of inter
to study how this difference in the choice of the vortici
leads to the statistical property of PVs around it.

The growth ratesv of the total enstrophy is defined as

sv~ t !5
1

^uvu2&

d

dt
^uvu2&52

^v•S•v&

^uvu2&
,

whereas that of passive vector variance as
4-7
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sPV~ t !5
1

^uwu2&

d

dt
^uwu2&52

^w•S•w&

^uwu2&
.

We consider passive vectors in the vicinity ofv in solenoidal
vector space, under the condition^uwu2&5^uvu2&.

In practice, we generatew as

w̃~k!5exp@ iu~k!#ṽ~k!, ~3.1!

whereu(k)P@0,e32p#. We have tried a number of differ
ent values ofe, which aree51 ~the completely randomized
case!, 0.7, 0.5, 0.2, 0.1, and 0.05. For each choice ofe,
50 000 realizations are used to produce PDFs.

Becausee is a measure of scrambledness, we have

^w•S•w&̄→^v•S•v& as e→0, ~3.2!

where the bar denotes ensemble average and

^w•S•w&̄→0 as e→1. ~3.3!

Let us consider the PDFP(X) of

X[
2

sX
S ^w•S•w&

^uwu2&
2

^w•S•w&̄

^uwu2&
D , ~3.4!

wheresX is the standard deviation ofX

sx52AS ^w•S•w&

^uwu2&
2

^w•S•w&̄

^uwu2&
D 2

. ~3.5!

Note thatP(X) has zero mean and unit variance.
We show in Fig. 9~a! the PDFP(X) for the case~1! and

Fig. 9~b! for the case~2!. It should be noted that the PDF
show a normal~Gaussian! distribution, not only for~2! but
also for ~1!. The normal distribution was expected for~2!
because the vorticity is just one of the initial conditions a
therefore contains no dynamical information of the Navi
Stokes equations. However, for~1! where the vorticity is
taken from the fully developed turbulence, it was anticipa
that the PDF of the stretching rates of PVs might hav
skewness indicating greater stretching rates than that of
enstrophy.

To make the data analysis more quantitatively, we exa
ine two statistical quantities, the average

m5
^w•S•w&̄

^v•S•v&
~3.6!

and the standard deviation

s5A (^w•S•w&2^w•S•w&)2

(^v•S•v&2^w•S•w&)2
~3.7!

both have been nondimensionalized against the enstro
growth rate. The results are summarized in Table II. Both
turbulence and a random field, all in all,m and s become
04630
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smaller for larger values ofe. Two features that distinguish
turbulence and a random field should be noted. First,
mean valuem decays more quickly for the case of a rando
field than for the case of turbulence. This can be attributed
the presence of the vorticity-strain correlation in turbulen
Second,s for random fields are much larger than that f
turbulence because the denominator becomes small
small e.

The present result suggests that it is virtually impossi
to explain the big difference in the behavior of the vortici
and PVs in their long-time evolution by solely looking
their infinitesimal-time development.

IV. THE INVISCID PROBLEM

We have seen that it is necessary to take into account
long-time evolution to explain the big difference between t
vorticity and passive vector. The conventional alignme

FIG. 9. The PDFs of stretching rates of PVs fore50.05, 0.10,
0.20, 0.50, 0.70, 1.0: around~a! v, which is a solution of the
Navier-Stokes equations, and~b! v, which is a random field. A
standard normal distribution, also depicted as a solid curve, is
tually invisible because the PDFs are so close to it in both cas

TABLE II. Statistics of growth rates of PVs.

Turbulence Random fields

e m s m s

0.05 5.731022 7.631022 1.0 2.4
0.10 5.631022 4.831022 1.0 7.5
0.20 5.231022 3.331022 7.731021 2.6
0.50 2.531022 1.531022 21.031021 1.2
0.70 8.231023 9.331023 28.031023 1.4
1.00 7.631027 7.631023 6.331023 1.4
4-8
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analysis, that is, the comparison of the vorticity with t
eigenvectors of the rate-of-strain tensor is not sufficien
useful in this respect, because it is relevant to instantane
time development only. In order to characterize the vor
stretching process better we will consider in this section
alternative alignment problem.

A. Numerical methods

We are interested in the Jacobian matrix relating spa
and material coordinates,

Ji j 5
]xi

]aj
~ i , j 51,2,3!. ~4.1!

Here we restrict ourselves to the consideration of invis
flows. The Jacobian matrix satisfies the following equatio

]Ji j

]t
1uk

]Ji j

]xk
5

]ui

]xk
Jk j , ~4.2!

where summation is implicit on repeated indices. To trea
numerically, it is useful to note that

D

Dt

]Ji j

]xi
50 for j 51,2,3, ~4.3!

which can be shown readily from Eq.~4.2!. Therefore, if we
take as usualJi j 5d i j at t50, then we have

]Ji j

]xi
[0 ~4.4!

at later times. We may thus regard each column ofJi j as a
solenoidal vector, which allows us to reduce memory s
and computations in their calculations. Introducing

~Wj ! i[Ji j , ~4.5!

we can write

]Wj

]t
5“3~u3Wj ! for j 51,2,3. ~4.6!

On top of the vorticity equation, we have three more simi
equations to be solved simultaneously.

B. An alternative alignment

Let us recall the Cauchy formula

v~a,t !5Jv0~a!, ~4.7!

which is a first integral of the Euler equations. Using it, w
can express the enstrophy in material coordinates as

uv~a,t !u25v0~a!TJTJv0~a!. ~4.8!

Here the matrixJTJ is symmetric and is a positive-definit
real matrix, which is known as the Cauchy-Green tensor,
e.g., @17#. It has three eigenvaluesa,b,g (a>b>g.0)
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and their product is unityabg51. There are orthogona
eigenvectorsEa ,Eb ,Eg associated with them.

In view of Eq. ~4.8! we need to consider alignment o
v0 with Ea ,Eb , or Eg to estimate the enstroph
growth. This alignment problem inherently dictates the infl
ence of the initial condition on the enstrophy evolution la
on. To study this alignment problem we need to evaluate
initial vorticity for each fluid particle. But it is not easy to
track quite a large number of fluid particles accurately. He
to avoid the difficulty associated with particle tracking w
simply invert the Jacobian matrix, whose determinant
1(5” 0), as

v0~a!5J21v~a,t !. ~4.9!

Likewise similar to Eq.~4.8! we can write for material line
elements~that is, the passive vectors in the case of invis
flows!

uw~a,t !u25w0
T~a!JTJw0~a!. ~4.10!

In Fig. 10~a! we show the PDF of the cosines of angl
betweenEa , Eb , andEg with v at t50.75. The PDFs show
that v has a tendency to be parallel toEg and it also has a
tendency to be perpendicular toEa . Thus this method cap
tures another aspect of depleted nonlinearity in that, it sho
that intense vorticity is correlated with the most compress
eigenvector of the Cauchy-Green tensor. ForEb direction, no
clear characteristic feature is observed. We should, howe
keep in mind that this alignment feature is not so strong
the one observed in the conventional alignment analysi
Figs. 2 and 3~compare the ordinate axis in Figs. 10!. In Fig.
10~b! we show the PDF of the cosines of angles betweew

FIG. 10. Alignment of~a! v and~b! w with eigenvectors of the
Cauchy-Green tensorJTJ, Ea ~solid!, Eb ~dashed!, andEg ~dot-
ted!.
4-9
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and Ea , Eb , and Eg at the same time. The PDFs sho
almost uniform distributions in all the three directions, ma
ing a sharp contrast to the case of vorticity. Therefore, in
analysis of the alignment problem associated with
Cauchy-Green tensor, depletion of nonlinearity can be
served more clearly than in that associated with the rate
strain tensor.

In Fig. 11~a! we compare the isosurfaces ofuvu2 with
those of tr(JTJ). Layerlike structures are predominant
both fields and the locations are overlapping. In Fig. 11~b!
the isosurface ofuwu2 is compared with that of tr(JTJ). The
regions with intenseuwu2 are again layerlike but they do no
appear to overlap with the regions with large tr(JTJ). How-
ever, unfortunately we have at present no explanation fo

Finally, a comparison of the two alignment problems is
order. The conventional alignment is instantaneous
mostly kinematic, whereas the alignment problem conside
here is cumulative and dynamical in that it dictates fini
time evolution. The method described here may be regar
as a first step toward extracting Lagrangian information a
should be applied for various fluid flows.

FIG. 11. Comparison of isosurface plots of tr(JTJ) ~lighter! with
~a! uvu2 ~darker! and ~b! uwu2 ~darker!. The thresholds chosen ar
0.2 (maxuvu2), 0.2 (maxuwu2), and 0.3 „max@tr(JTJ)#….
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V. SUMMARY AND DISCUSSION

In order to characterize the effect of nonlinear constra
imposed by the Biot-Savart formula, we have compared ti
evolution of the vorticity and passive vectors in detail usi
numerical simulations of Navier-Stokes turbulence.

For finite- ~or, long-! time evolution, we find that the PVs
are stretched more intensely than the vorticity. A number
quantitative evidences are available. First, as far as
present numerical simulations which cover up toRl;100
are concerned,n^uwu2& keeps growing with decreasing vis
cosity, whereasn^uvu2& appears to be limited in growth. Sec
ond, the PDF of the stretching rate of PVs is shifted for mo
intense stretching compared with that of the vorticity.

Using various initial conditions, we find for a majorit
class of passive vectors

^uw~x,t !u2&.^uv~x,t !u2& ~5.1!

in the long run. But, this inequality does not necessarily h
valid at all times for certain initial conditions.

The point is made clear by considering infinitesimal-~i.e.,
short-! time evolution. We have investigated the PDFs of t
growth rates of the PV variance

sPV~ t !5
1

^uwu2&

d

dt
^uwu2&52

^w•S•w&

^uwu2&
. ~5.2!

It is found that the PDF is close to a Gaussian distributio
even when the samples are taken around the vorticity, wh
is a solution of the Navier-Stokes equations. This impl
that there are infinitely many PVs that grow more slow
than the vorticity.

Then, the apparent dominance of the growth of PVs o
that of the vorticity is a consequence of correlation built
between the vorticity and the rate of strain over finite-tim
evolution. It is difficult to get a proper estimate of the vorte
stretching term by purely kinematic methods, that is, by h
dling the Biot-Savart law only.

For treating finite-time evolution, use of a kind of align
ment problem of the Cauchy-Green tensor is proposed. A
first step, we have tested it for the Euler equations and
served that it is found that vorticity tends to align itself wi
the most compressing eigenvector of the Cauchy-Green
sor. In this sense this method captures depletion of non
earity clearly and its detailed application may be useful
the characterization of flow structure.

It may be useful to state physical meanings of pass
vectorw here. One is the kinematic magnetohydrodynam
~MHD! equations. This is obtained by dropping the Loren
force term (B•“)B and replacingB by w in the usual set of
MHD equations,

]u

]t
1~u•“ !u52“p1~B•“ !B1nnu, ~5.3!

]B

]t
1~u•“ !B5~B•“ !u1nnB. ~5.4!
4-10
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The other one is the material line elements for the casn
50.

As mentioned above, the spatial resolution employed
this work is not very high, particularly in the production o
the PDFs of the stretching rates of PVs. It is of interest
examine whether the results may change qualitatively or
in turbulence at higher Reynolds numbers.
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APPENDIX A: TWO-DIMENSIONAL NAVIER-STOKES
EQUATIONS

In two dimensions, a similar active-passive comparison
well known ~see, for example,@18,19#!. In this case vorticity
v and a passive scalaru satisfy the same form of equation

]v

]t
1~u•“ !v5nnv ~A1!

and

]u

]t
1~u•“ !u5nnu, ~A2!

where“•u50.
The dissipation rate of the enstrophy is given by

h52
d

dtK v2

2 L 52n^u“vu2& ~A3!

and that of passive scalar variance by

hPS52
d

dt K u2

2 L 5n^u“uu2&. ~A4!

Numerical simulations starting from a random initial co
dition, which is localized in the low wave number comp
nents, are shown in Fig. 12 for three different values
viscosity n5131024, 231024, 431024. Unlike the
three-dimensional~3D! counterpart ~Figs. 1!, not only
n^u“vu2& but also n^u“uu2& depends on viscosity only
weakly; the former changes by about 28% and the latter
24% when the value of viscosity changes by a factor of
This may be interpreted as follows. Not only Eq.~A1! but
also Eq.~A2! possesses a positive-definite conserved qu
tity; there are two inviscid conservation laws^v2& and^u2&
underlying Eqs.~A1! and ~A2!. These two conserved quan
tities give h and hPV physical meanings~see Table III! as
their rates of dissipation.
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APPENDIX B: A SPECIAL CASE

An example can be constructed where a class of pas
vectorsw grows faster than the vorticityv in the early stage
by making use of the Taylor-Green vortex. We take

v5S ~C2B!sinx cosy cosz

~A2C!cosx siny cosz

~B2A!cosx cosy sinz
D ~B1!

and

w5S ~R2Q!sin~x1f!cos~y1f!cos~z1f!

~P2R!cos~x1f!sin~y1f!cos~z1f!

~Q2P!cos~x1f!cos~y1f!sin~z1f!
D ,

~B2!

whereA,B,C andP,Q,R are amplitudes of the vorticity and
a passive vector, respectively. In this case we can see e
that

d

dt K uvu2

2 L 5
d

dt K uwu2

2 L 50. ~B3!

In general, the following formulas can be derived for t
second time derivatives of the enstrophy~-like! quantities:

d2

dt2K uvu2

2 L 5^~S•v!•~S•v!&2^v•P•v& ~B4!

and

FIG. 12. An example of active-passive comparison: time evo
tion of the enstrophy dissipation rateh(t) ~the three curves above!
and a corresponding quantityhPS(t) ~the three curves below! for
passive scalars.

TABLE III. Relationship between positive-definite conserve
quantities and depletion of nonlinearity.

Active Passive

3D ^uuu2& ^u•d l& n^uvu2& is meaningful
^u•v& n^ud lu2& is meaningless

2D ^uuu2& ^u2& n^u“vu2& is meaningful
^v2& n^u“uu2& is meaningful
4-11
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d2

dt2K uwu2

2 L 5^~S•w!•~S•w!&2^w•P•w&1
uv3wu2

4

1~v3w!•S•w. ~B5!

We have evaluated these by using computer algebraMAPLEV

after eliminating C and R using C52(A1B) and R5
2(P1Q). The final results are

d2

dt2 K uvu2

2 L 5
5

64
~A21AB1B2!2 ~B6!

and

d2

dt2 K uwu2

2 L 52
1

32
~10A2PQ17B2P217A2Q2110B2Q2

110B2PQ116QBAP110A2P2110P2BA

110Q2BA!cos4~f!1
1

32
~8Q2BA18B2Q2

18A2PQ12QBAP111B2P218P2BA

111A2Q218B2PQ18A2P2!cos2~f!

1
1

128
~18P2BA19B2P2118Q2BA

118B2PQ136QBAP118A2PQ118B2Q2

19A2Q2118A2P2!. ~B7!
-

tia

04630
The condition that they share their Fourier spectrum is

A21AB1B25P21PQ1Q2. ~B8!

By introducing a set of new variables

A5~a2b!/A2, B5~a1b!/A2,

P5~p2q!/A2, Q5~p1q!/A2, ~B9!

the above condition is reduced to

3a21b253p21q2. ~B10!

So, the amplitudes of the passive vector can be parametr
as

p5A3a21b2 cosu,

q5A3a21b2 sinu. ~B11!

Using them we find

d2

dt2 K uwu2

2 L 2
d2

dt2 K uvu2

2 L >0, ~B12!

if cos2f>12(A30/6)50.91. Therefore for the class~B2!
around Eq.~B1!, PVs grow more intensely than the vorticit
in the initial stage of development, ifufu is not close top/2.
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